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Abstract

The quality of confinement in magnetically confined fusion plasmas can be signif-
icantly deteriorated by turbulent transport. This makes a comprehensive under-
standing of turbulence in plasmas essential. Since radially sheared poloidal plasma
flows can reduce turbulence and thereby transport, they are a relevant input param-
eter for predictive simulations of turbulent transport.

Doppler reflectometry is a diagnostic technique that can be used to study turbu-
lence in fusion plasmas. It is a microwave diagnostic that exploits the back-scattering
of electromagnetic waves from turbulent structures to obtain localized information
about the perpendicular wavenumber spectrum of turbulence, the perpendicular
propagation velocity of density fluctuations and the radial electric field for a wide
range of spatially accessible regions.

In the recent past, poloidal asymmetries in the perpendicular velocity measure-
ment have been observed in various fusion devices using Doppler reflectometry. An
explanation of these asymmetries may lie in the diagnostic response.

Hence, numerical investigation using synthetic diagnostics is of great interest. The
IPF-FD3D full-wave code is used as a synthetic Doppler reflectometry diagnostic,
simulating microwave propagation and plasma-wave interaction at the cut-off layers
in the plasma. The velocity measurement is studied in slab geometry and circular ge-
ometry using both isotropic and anisotropic synthetic turbulence. In particular, the
analyses focus on the effects of various turbulence levels, the turbulence wavenum-
ber spectrum, the poloidal position of the measurement antenna, and anisotropic
turbulence structures.

Furthermore, the impact of the density wavenumber spectrum on the measure-
ment of the perpendicular velocity is studied analytically. Doppler reflectometry
probes the perpendicular wavenumber spectrum with a spectral resolution Ak,
around a central k£, . Depending on the underlying density wavenumber spectrum,
this spectral width can have a decisive influence on the measured velocities. An
analytical expression for predicting the deviations due to this diagnostic effect is
derived and used for comparison with the results from full-wave simulations.

Good agreement between analytical predictions and full-wave simulation results
is obtained for all plasma geometries and types of synthetic turbulence. No other
deviations are observed in the study. The magnitude of the observed diagnostic
effect depends strongly on the geometry of the measurement beam and the plasma
curvature and has to be considered under certain experimental conditions. However,
the identified diagnostic effect is less pronounced than the poloidal asymmetries
measured some the experiments, which could point to a real physics effect.
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1 Introduction

Since the 1950s scientist have been trying to investigate the magnetic confinement
of high-temperature plasmas with the purpose to build a fusion reactor [1].

Plasma is a gas of charged particles that forms at high temperatures through
ionisation processes. Since it is in contrast to neutral gas, it is often referred to
as the fourth state of matter. Due to the electric charge this state is characterized
by strong collective effects and high conductivity. Under sufficiently high energies
(keV range) due to high temperature or pressure, particles with light nuclei can
overcome the Coulomb barrier and fuse to form a heavier nucleus. This releases
energy, corresponding to the mass defect between product and reactants. These
fusion processes are constantly ongoing in the universe, such as in stars. However,
this principle is also used to develop a source of energy in form of a fusion reactor
on the Earth.

Therefore, the reaction between deuterium (D) an tritium (T) seems to be the
most likely because of the high fusion cross-section and the large energy release.
The nuclei fuse into helium (He) and a neutron, which carries most of the energy.

D+ T — *He (3.5MeV) +n (14.1 MeV). (1.1)

To enable fusion, particle diffusion must be counteracted by a confining force. While
in stars gravity undertakes this function, for nuclear fusion on Earth the plasma can
be kept together by magnetic confinement. The charged particles are bound to the
magnetic field lines via gyromotion due to the Lorentz force.

An overall measure for the quality of confinement is the so-called energy con-
finement time 7x. This time is one of the main parameters in the so-called triple
product [2]

nTtg > 3-10*'keVs/m?, (1.2)

where n is the density and T" the temperature. It provides a minimum estimate to
achieve reactor conditions with fusion. When the condition (1.2) is satisfied, ignition
occurs and the fusion reaction becomes self-sustaining.

The tokamak, whose sketch is shown in figure 1.1(a), is an axisymmetric magnetic
confinement device. The confining magnetic field is a combination of a toroidal field
B, generated by external poloidal coils and a poloidally revolving field By. The latter
is induced by a toroidal plasma current generated by transformer coils at the torus
center. Additional stability is obtained using vertical field coils. The magnetic field
forms torus shaped nested magnetic flux surfaces and thus inhibit to large degree
particle and energy losses. The magnetic flux surfaces are usually designated by the
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Figure 1.1: (a) Sketch of a tokamak (adapted form [4]) and (b) poloidal cross-
section of ASDEX Upgrade (adapted form [5]).

normalized poloidal radius p,,;, which is defined by

[T~ 1,
=4 — 1.
Ppol \I’S _ \I’O ( 3)

where Wy is the poloidal magnetic flux on the magnetic axis at the center of the
plasma and Wy is the magnetic flux on the separatrix, which is the last closed flux
surface. It therefore varies from 0 at the plasma center to 1 at the plasma edge.
The flux surfaces and associated parameters are shown in figure 1.1(b).

This cross-section is related to the experimental device AxialSymmetric Divertor
EXperiment ASDEX Upgrade (AUG) [3]. This medium size tokamak located at the
Max Planck Institute in Garching, Germany, is used as a reference in this work. The
machine has a D-shaped poloidal cross-section and is is equipped with a divertor,
which diverts the magnetic field at the plasma edge towards collector plates. Thus,
impurities can be removed from the plasma, which leads to better confinement. The
experiment is usually run with deuterium as plasma fuel. Main characterizing pa-
rameters of the experiment are listed in table 1.1.

Although the particles are confined on the flux surfaces, they can break out of
their orbits due to Coulomb collisions. This leads to a transport of heat and par-
ticles and thus to a reduction of the energy confinement time 7. In addition, the
transport in toroidal plasmas is enhanced by the inhomogenity of the magnetic field,
which is described by the so-called neoclassical transport. However, the experimen-
tally measured transport in tokamaks is usually even higher than suggested by the
neoclassical theory. This effect is attributed to the presence of plasma turbulence
and the associated turbulent transport.



Parameter Value
Total height of the device | 9m

Major plasma radius 1.65m
Minor plasma radii 0.5m
Magnetic field 32T
Plasma current 1.2MA
Pulse length 10s
Plasma volume 13 m?
Plasma temperature 100 -105°C

Table 1.1: ASDEX Upgrade technical data.

Nowadays, computationally expensive numerical simulations aim to predict tur-
bulence and turbulent transport in fusion plasmas. The most advanced description
for the core plasma is the gyrokinetic theory. This approach exploits the fast gy-
romotion of charged particles around magnetic field lines, whose frequencies are
typically fast compared to time scales of turbulence. Hence, averaging over the gy-
romotion can reduce the kinetic plasma description by one dimension, which makes
the simulations computationally easier to perform.

Experimentally, Doppler reflectometry diagnostics can be used for turbulence in-
vestigation. In this method, an electromagnetic beam in the microwave frequency
range is injected into the plasma. The beam is back-scattered by the turbulent fluc-
tuations at the so-called cut-off layer similar to scattering at a diffraction grid. In
contrast to conventional reflectometry, where the beam is injected perpendicular to
the cut-off layer, Doppler reflectometry injects the beams at an oblique angle. This
allows localized measurements of the perpendicular wavenumber spectrum S(k, ),
the perpendicular propagation velocity of density fluctuations v; and the radial cor-
relation length [,.

Since a diagnostic response can be very complex, often synthetic diagnostics are
employed. For Doppler reflectometry full-wave codes are used, simulating the mi-
crowave beam propagation including the wave-plasma interaction. Additionally,
synthetic diagnostics can lead to further understanding of non-trivial diagnostic
effects due to wave propagation and the complex scattering processes in the exper-
iment.

Non-trivial, non-linear effects concerning the perpendicular wavenumber spectrum
were already investigated in experiment and simulation [6, 7]. Both consistently
confirm different results as a function of beam polarization due to varying scattering
conditions.

The perpendicular velocities have also been investigated in various fusion devices
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by means of reflectometry. In the recent past, some of them could identify poloidal
asymmetries [8, 9, 10], some could not [11]. In order to determine potential diagnos-
tic effects, this thesis provides comprehensive studies of v, using a synthetic Doppler
reflectometry diagnostic. The presented results investigate synthetic random phase
turbulence. Preliminary results on AUG turbulence from gyrokinetic simulations
are presented in the outlook.

Chapter 2 and 3 will provide the theoretical background regarding turbulence
in plasmas and the Doppler reflectometry diagnostic, respectively. The simulation
results are obtained using self generated synthetic turbulence in slab geometry and
circular geometry. Therefore chapter 4 will provide information on the numerical
generation of turbulence. Chapter 5 will present the analytical modeling of Doppler
reflectometry, including the description of the used full-wave code IPF-FD3D. Fi-
nally, the results will be presented in chapter 6 followed by a summary and an
outlook in chapter 7.



2 Turbulence

Turbulent flow can be described as chaotic or unsteady fluid movement. It is in
opposite to laminar flows, which are characterized by flow sheets that move parallel
to each other undisturbed. Turbulence is usually driven by gradients in e.g. pressure,
density or temperature that lead to micro-instabilities. When these instabilities are
amplified, non-linear processes cause a broad redistribution of energy and turbulence
develops.

Incompressible neutral fluids, where V - u = 0, can be described by the Navier-
Stokes equation

0
Pm (a + (u- V)) u=—Vp+nAu, (2.1)

where u is the fluid velocity, p,, the mass density, p the pressure and 7 the viscosity.
By normalizing the contributing quantities to the characteristic system sizes, the
dimensionless Reynolds number Re can be deduced:

Re = %’” UoL. (2.2)

Here, Uy is the characteristic fluid velocity and L is the characteristic size of the
system. It can be used to estimate the intensity of turbulence in a system, by ex-
pressing a ratio between non-linearity and viscosity. Figure 2.1 shows the transition
from laminar to turbulent flow around an obstacle with increasing Reynolds num-
ber. Vortices are carried by the flow and form a so-called Kdrman vortex street. As
the Reynolds number increases further, the vortices start to interact with each other
and end up in a fully developed turbulence. The turbulent vortices are characterized
by their wavenumber k, the inverse of which is approximately equal to the vortex
size L < 1/k.

This chapter first introduces the concept of the turbulence wavenumber spectrum,
which is another important way of characterizing turbulence. Secondly, the effects
of plasma currents on turbulence are discussed with the aim of motivating the mea-
surement of plasma velocities.

2.1 Turbulence wavenumber spectrum

One of the main interests in the field of turbulence is the distribution of energy
across different vortex scales, which are characterized by their wavenumber k. This
distribution is called the turbulence wavenumber spectrum. Usually, energy is in-
jected into the system by external or internal instabilities in a certain injection
range ki,;. With time, the vortices merge or split due to non-linear interactions
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Figure 2.1: Sketch of fluid flow for different Reynolds numbers. With increasing
Reynolds number turbulence develops from laminar flow through Kérman vortex
streets. (adapted from [4])

between the different scales whereby energy is transferred. The modifications form
cascades o< k™ in the wavenumber spectra, where « is called the spectral index. At
some very small vortex sizes, energy is dissipated to the system, usually in the form
of heat.

Turbulence structures are correlated in space and time. The spatial correlation is
defined by the turbulence correlation length [, which is related to the average size
of the turbulence structure. Temporal correlation is specified by the decorrelation
time 74, giving an estimate for the mean life time of the fluctuations.

For homogeneous, isotropic three-dimensional (3D) turbulence, the turbulent wave-
number spectrum can be described by the so-called Kolmogorov spectrum [12],
shown schematically in figure 2.2 (a). From dimensional analysis using energy con-
servation it can be derived that the distribution follows a direct cascade, where
energy is transferred towards smaller scales:

E(k) = CEPE3 for k > ki, (2.3)

where C' is a constant and € the rate of energy dissipation.

In magnetic fusion plasmas mainly two-dimensional (2D) turbulence is observed.
The electrons are exposed to rapid streaming along the magnetic field lines, so that
the turbulence in the poloidal plane is more significant and k; > k). Here, as in the
following, the subscripts parallel (||) and perpendicular (L) refer to the background
magnetic field. Vortex interactions in 3D turbulence, such as vortex stretching,
do not occur in 2D. Thus, an additional conservation of vorticity 2 and thereby
enstrophy W oc Q2 lead to the formation of new scaling laws [13].

For neutral fluids in 2D a Kolmogorov-Kraichnan wavenumber spectrum, as sketched
in figure 2.2 (b), is observed. It is characterized by a dual cascade, obtaining two
different spectral indices, regarding one inverse energy and one direct enstrophy
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Figure 2.2: Turbulence wavenumber spectra of isotropic neutral fluids. (a)
The Kolmogorov spectrum for 3D fluids with a direct energy cascade. (b) The
Kolmogorov-Kraichnan spectrum for 2D fluids with a dual cascade for energy and
enstrophy transfer. (adapted from [14])

cascade:
2/31.-5/3 ¢ o
k) — {Ce k or k < King, o)

Ceé/3k_3 for k > ki,

where €q is the rate of vorticity dissipation. The k;,; is often referred to as the
position of the spectral knee.

In fusion plasmas radial gradients in several parameters lead to a loss of isotropy.
Therefore k; and k, have to be used for turbulence characterization and the tur-
bulence spectrum becomes a two-dimensional function. Perpendicular refers in this
context to the direction perpendicular to the background magnetic field and to the
flux surfaces. In the following, the power spectrum will by described by

E (kv k1) o< |h (K, kL)) (6n/n)?, (2.5)

where |h (k., k1 )|* is the 2D wavenumber spectrum and (dn/n) is the turbulence
fluctuation level. Doppler reflectometry, which is the main diagnostic investigated
in this work, provides one dimensional wavenumber spectra regarding the perpen-
dicular coordinate E(k, ).

The presence of electron and ion motions, as well as the overlap of various in-
stabilities driving the turbulence, increase the complexity as well. Nevertheless,
the experimentally determined wavenumber spectra of fusion plasmas are generally
Kolmogorov-like. They differ only in their spectral indices and knee positions, which
can be useful to obtain information about the underlying instability.

2.2 Turbulence suppression by sheared flows

In 1982 Wagner et al. discovered a turbulent transport barrier at the tokamak
experiment ASDEX [15]. The new operation mode was called high confinement
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mode (H-mode) and is characterized by said barrier, which reduces particle and
heat transport. This leads to an increase in confinement time of a factor 2 to 3. In
contrast to the standard low confinement mode (L-mode), the barrier comes with
much steeper gradients of density and temperature at the plasma edge.

The transition from L-mode to H-mode is nowadays believed to be triggered by a
gradient in the radial electric field E,. [16], which leads to sheared plasma flows due

to the F x B drift
Ex B

32
Since the drift is independent of the charge, it generates bulk plasma movement,
which also carries the turbulent structures. Thus, they move in perpendicular di-
rection with a velocity of

(2.6)

VExB =

V| = VgExB + Uph, (2.7)

where v, is the additional phase velocity of the density fluctuations in the plasma
frame, that is dependent on the turbulent structure size.

It is commonly assumed that turbulence vortices, when subjected to strong shear
flows, are first tilted and stretched and then torn apart, reducing the radial corre-
lation length and thus the turbulent diffusion step size. This leads to a decrease in
turbulence amplitude and transport [16]. The decorrelation mechanism is illustrated
in figure 2.3. However, energy is only redistributed onto smaller scales, rather than
extracted from the turbulence.

Energy transfer can occur through the general tilting and stretching of vortices
due to negative viscosity, the so-called Reynolds stress [17]. This mechanism drives
zonal flows, which are low-frequency poloidal and toroidal symmetric electrostatic
fluctuations, and thus do not involve radial transport. Nevertheless, since zonal flows
can be driven by turbulence, a reduction in the turbulence level will also lead to a
reduction in energy transfer into zonal flows. Accordingly, comprehensive modeling
is needed to fully capture this complex interplay.

The formation of such transport barriers like for the L-H-transition through the
E, gradient are still under investigation. Thus, experimental and numerical investi-
gations regarding the turbulent structures and their perpendicular velocities v, are
of great interest.
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Figure 2.3: Decorrelation mechanism due to sheared flows. The vortex is stretched,
tilted and finally split up. (adapted from [18])






3 Doppler reflectometry

Microwave reflectometry is a common diagnostic technique used to analyze the elec-
tron density and its turbulent fluctuations in fusion plasmas. In conventional reflec-
tometry electromagnetic beams are radiated perpendicular to the so-called cut-off
layer, where they are reflected from the plasma. By successively increasing the fre-
quency, the wave penetrates deeper into the plasma and a scan of the density is
obtained. In contrast, Doppler reflectometry exploits the back-scattering of electro-
magnetic waves at density fluctuations by using obliquely incident beams. Thus,
the diagnostic provides spatially, temporally and wavenumber-resolved information
about the power of density fluctuations and, exploiting the effect of the Doppler
shift, also the measurement of their velocity.

First, this chapter gives an introduction on relevant theory of wave propagation
in plasmas. This is followed by a section focusing on the physical mechanism of
Doppler reflectometry. Relevant discussions on spectral and spacial resolution of the
measurements are given, followed by a description of the ASDEX Upgrade Doppler
reflectometer.

3.1 Electromagnetic wave propagation in plasmas
Waves are usually considered as periodic disorders of equilibrium parameters

W(r,t) = o(r) + ¢y exp(ik - r — iwt), (3.1)

with the wave vector k, denoting the direction of propagation of the wave and its
frequency w.

The behavior of electromagnetic waves is determined by Maxwell’s equations that
can be used to derive the wave equation:

2

V x (Vx E) = _%e(w)E, (3.2)
where E is the wave’s electric field, é(w) is the complex dielectric tensor and ¢ is the
speed of light. In order to determine the dielectric tensor for Doppler reflectometry;,
some prior assumptions are usually made.

Reflectometry diagnostics in plasma physics typically deal with frequencies in the
microwave range (GHz). Hence, the thermal velocity of the electrons is far below
the wave’s velocity vy, < w/k, so for the wave description the so-called cold plasma
approximation is used, where pressure contributions are neglected. Furthermore,
the applied frequencies are much higher than the ion plasma wy; and cyclotron w,;
frequencies, so that the plasma response is defined by the electrons only.

11
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Considering these assumptions, the dielectric tensor in cold plasma approximation
equals:

S=1-
S —iD 0 w2 — Wi
-~ . wce w28
éw)=|iD S 0 |, D= e Tpe (3.3)
w w? —w
0o 0 P 2
P=1--E
w

Therefore, the wave propagation depends on the local background electron density
n. and the magnetic field By through the electron plasma w,. and cyclotron we.

frequencies:
Ne€2 eBy
Wpe = , Wee = : (3.4)
€0Me Mme

For geometrical reasons, the wave in the experiment is launched perpendicular to
the background magnetic field. Consequently, for Doppler reflectometry only those
modes are of interest where B 1 k.

Assuming a coordinate system with By = Byé, and using the wave approach (3.1)
for the electric field, after some rearrangements the wave equation (3.2) becomes:

N?—-S —iD 0 E,
iD  —S 0 B, |=0 (3.5)
0 0 N2 - P Elz
Here, the refractive index N = |N| = |ck/w]| is introduced. If the refractive index

approaches zero (N = 0), the wave vector will change its sign and the wave is
reflected.

There are two non-trivial solutions for the determinant of the matrix (3.5) to be
zero, that correspond to the two different propagation modes. The ordinary mode
(O-mode), where the wave’s electric field is parallel to the background magnetic field
(E;1 || Bo) and the extraordinary mode (X-mode), where the wave’s electric field is
perpendicular to the background magnetic field (E; L By).

Hence, for the O-mode, the refractive index describing the wave propagation re-
sults from the last line of (3.5):

N2 = (1 - wﬁe) . (3.6)

w2

The cut-off frequency, which is the frequency where Ng approaches zero, is equal
to the plasma frequency wo co = wpe. Thus, it only depends on the electron density

12
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n.. The cut-off layer, where the wave is reflected, will be therefore parallel to the
magnetic flux surfaces p,o in the plasma.
For the X-mode the refractive index follows from the upper two equations and is

given by
2 2 2
N2 —1_— Wpe w “pe
X w2 w2 — w2 — w2
ce pe

(3.7)

Remark here, that an additional dependency on the magnetic field is present due
to the electron cyclotron frequency. Hence, the cut-off layers are not necessarily
aligned with the magnetic flux surfaces.

3.2 Physical mechanism of Doppler reflectometry

The mechanism of Doppler reflectometry, also called Doppler back-scattering, is
illustrated in the figure 3.1. It shows the cross-section of the plasma on the left
and the launching and receiving antenna on the right. It is located outside of the
plasma in vacuum, where the refractive index is N = 1. The incident beam enters
the plasma with an oblique angle 6 with respect to the cut-off surface normal. As
the beam approaches denser plasma, the refractive index decreases according to the
dispersion relation and is thus bent until it is reflected at the cut-off layer. At this
point, the refractive index is minimal and the beam is completely parallel to the
cut-off surface.

If turbulent density fluctuations are present, a part of the wave is also back-
scattered at the turbulent structures, similar to back-scattering at a diffraction grid.
Due to the amplification of the microwave field at this turning point, the signal
relates predominantly to this region.

The main signal corresponds to fluctuations from kg, which fulfill the m = —1
Bragg condition

kg = —2k; = —2Nky, (3.8)

where N is the refractive index, k; the wavenumber of the incident beam at the
tuning point and kg the vacuum wavenumber kg = 27 fy/c. However, due to the ex-
tended beam size there are also contributions of other k close to kg in the scattering
region. Consequently, the spectral Ak and spatial Ar resolutions of the probe are
of special interest.

For slab geometry, i.e. flat refractive index layers, the refractive index at the
turning point is simply N = sin . For curved geometries, as in the experiment, ray-
tracing techniques have to be used in order to evaluate N? = N? + N ”2 to determine
the minimum N.

The power of the back-scattered wave P depends on the turbulence amplitude
(0n/ng), where ng is the background density. For sufficiently low turbulence lev-
els, usually below 1% of the background density, the response is said to be linear,
corresponding to single scattering events.

P o (0n/ng)*h(k)?, (3.9)

13
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Cutoff Backscatter )
: | microwave
beam k,

He}‘lecﬁon

Figure 3.1: Sketch of the Doppler reflectometer’s microwave beam path. The beam
enters the plasma from an antenna with oblique angle #. In addition to the beam’s
reflection, a part of the wave is back-scattered at the turbulence structures at the
cut-off. (adapted from [20])

where h(k) is the underlying turbulence spectrum. However, real fusion plasmas can
have significantly higher turbulence levels of 5-10 % and thus enter into a non-linear
response regime. In this case, significantly more power is back-scattered by multiple
scattering events.

Since the density fluctuations in fusion plasmas are usually moving relative to
the probing beam with a velocity v, the back-scattered spectrum becomes Doppler
shifted. The Doppler shift frequency is

UJD:V-kﬂ:UJ_k?J_—l—U”/{H—i—UTk‘r%UJ_k‘J_. (3.10)

This approximation can be assumed because the radial and parallel terms are usually
very small compared to the perpendicular term, since kj < k; and k. — 0 at the
beam turning point.

As already stated in chapter 2, the actual measured perpendicular velocity
v = 27TfD/k'J_ is:

Vi = UpxB + Uph- (3.11)

The magnitude and direction of the phase velocity can provide information about
the underlying turbulence [19]. However, experiments and simulations have shown
that vy, is usually small compared to the £ x B drift velocity. Assuming v, < vgxp
the radial electric field E,. can be determined from the perpendicular velocity. From
(2.6) follows

E, =v.B. (3.12)

14
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Figure 3.2: Doppler Spectrum from ASDEX Upgrade Doppler reflectometer (X-
mode), including a Gaussian fit. The integral of the fit is the back-scattered power P.
The Doppler shift fp is used to determine the perpendicular velocity v .

A typical Doppler spectrum, obtained from a Doppler reflectometer is shown in
figure 3.2. The spectrum is plotted in logarithmic scale on the y-axis. The peaks of
the Doppler spectrum are fitted with a Gaussian function:

_(F—ip)?

S(A, fp,o,f)=A-e 27 . (3.13)

Here, A is the peak amplitude, fp the peak position and therefore the Doppler shift
frequency. o is the peak width with approximately 68% of the complete peak’s area.

The turbulence powers are determined by integrating the fitted Gaussian. This
power is measured for multiple wavenumbers at the same radius. Plotting the back-
scattered power P against the probed wavenumber %k, gives the turbulence power
spectrum. The Doppler shift frequency fp is needed to determine the perpendicular
velocities v; and can be obtained directly from the fit parameters. Thereafter, the
perpendicular velocity can be obtained by (3.10).

3.3 Spectral and spatial resolution

The launched microwave beam can be approximated to be Gaussian, characterized
by a beam waist wg at the beam’s focus. For an input vacuum wavenumber kg, the
spectral resolution is given by [21]

2

2v2 w2 ok
Ak(wo,effa R67 Rb> ko) = 'LU(\)/; 1+ <O;3—ﬂ:cfo> : (314)

Here, wg e denotes the effective beam waist wger = wo/ cos(#). This includes the
effect of geometric projection of the beam waist towards the reflecting layer, that is

15



3. Doppler reflectometry
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Figure 3.3: (a) Dependence of the spectral resolution on the beam waist wq for
different plasma curvature radii. For finite curvature radii an optimal beam waist
exists. (b) Weighting function, that is computed using full-wave simulations for
a beam of f; = 58.4GHz. The antenna is located at (R, z) = (2.3,0.0)m and is
pointing slightly upwards.

caused by the oblique incidence with the angle §. The effective radius peg is [22]

2R.Ry

Peft = Rc+2Rb’

(3.15)

where R, is the curvature radius of the plasma and R; is the beam curvature radius
at the cut-off layer. The latter can be derived using the Gaussian beam equations:

Ry(2) = 2(1 + (%R)?). (3.16)

Here, z is the covered track of the beam, which can be identified by using the
raytracing techniques and zp = waeﬁ/ 2kg.
For slab geometry R, = co. Therefore, (3.14) reduces to

Wo,eff

Ak

(3.17)

For wider beams the spectral resolution gets finer. This is shown by the blue dotted
line in figure 3.3(a).

For circular and ASDEX Upgrade geometry, plasma and beam curvature radii
have to be taken into account. Thus, an optimal beam waist exists, for which the
spectral width Ak is minimal. Setting the first derivative of (3.14) to zero leads to

Wopt = ,/%f. (3.18)
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3.4 Heterodyne detection

Since the optimal beam waist depends on the input wavenumber, the incident angle
and the propagation distance the used beam waist can not be perfect for all frequen-
cies. Figure 3.3(a) shows the spectral resolution for two different finite curvature
radii, that correspond to the circular geometry used in the following (R, = 0.40 m)
and the AUG geometry (R. = 0.75m). The curves clearly show, that larger curva-
ture radii can significantly improve the spectral resolution.

Alternatively, the spectral and spatial resolutions can be determined by analyzing
the so-called weighting function using full-wave simulations [23]. For a mono-static
antenna configuration, as used for Doppler reflectometry, the complex weighting
function is:

W(r) =< E*(r,t) >, (3.19)

where E is the complex incident probing electric field. < - > denotes the time
averaging over a microwave period. The weighting function determines for each
point in space the phase and amplitude with which an elementary emitter (dn)
would contribute to the main signal. A typical 2D weighting function for a beam
with fy = 58.4 GHz approaching the plasma from the right is shown in figure 3.3(b)
for a plasma in circular geometry. The spatial resolution can be determined directly
from the spatial extent of the weighting function due to the Gaussian fit around
the inflection point of the beam. The contour shows that the maximum of the
weighting function, corresponding to the dominant back-scattered signal, is slightly
shifted towards the plasma edge, compared to calculations done by raytracing. This
also leads to a slightly different probed kg, than predicted by raytracing. The actual
wavenumber and its spectral resolution Ak can be determined by Fourier analysis
of the weighting function at the maximum position.

3.4 Heterodyne detection

Doppler reflectometry usually uses heterodyne detection [24] to obtain the back-
scattered field. Thus, the received signal S has two components, an in-phase I and
a quadrature () part:

I(t) = A(t) cos((t)), (3.20)
Q(t) = A(t) sin(o(t)). (3.21)

The combined complex signal, that is used for further analysis is
S(t) = I(t) +iQ(t) = A(t)e®. (3.22)
Thus, the amplitude A and phase ¢ can be determined separately:

A(t) = /1(t)? +Q(t)?, (3.23)

o(t) = j:arctan(%). (3.24)
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4 Turbulence modeling

In the following, Doppler reflectometry is investigated theoretically using simula-
tions. These synthetic experiments require artificial turbulence.

All of the simulations shown in this thesis are based on isotropic and anisotropic
synthetic turbulence. In this way, simple geometries can be studied where a constant
bulk velocity is modeled by continuously shifting the entire static turbulence pattern.
The comparison between the input parameters and the results is straightforward.
However, since the synthetic turbulence omits a lot of the complexity of realistic fu-
sion plasmas, further investigations need gyro-kinetic turbulence simulations based
on experimental data. Thus, it allows direct comparison to the experiment. The tur-
bulence includes self-generated radially sheared plasma flows, including an intrinsic
phase velocity of the turbulence structures and realistic intermittent time behavior.

This section focuses first on the generation of synthetic turbulence and its velocity
for simple geometries. Turbulence spectra used in further analysis are presented,
followed by an introduction to gyro-kinetic turbulence.

4.1 Synthetic turbulence

4.1.1 Turbulence generation

The turbulence is created from initially set two-dimensional wavenumber spectra
h(kg,k.), where kp and k, are the wave vectors in both dimensions of the (R, z)
poloidal plane. For Kolmogorov-like realistic spectra this has the form

E=mif k] < Fxoee,
h(kR;kz):{ 1 ||— k

k=" else,

(4.1)

where |k| = \/k% + k2. The spectrum is shown in figure 4.1 for kr = 0. Note that
following equation (3.9) a spectral index 7 in the turbulent wavenumber spectrum
will correspond to a spectral index of o = n? in the final power spectrum P.

To avoid coherent signals, random complex phases are added on the spectra, so
that

h(kg, k.) = |h (kg k)| e?®rk=) ¢ € [0, 2n] uniformly random. (4.2)

In contrast to realistic turbulence, that is anisotropic and shows intermittent time
behavior, the generated synthetic turbulence is isotropic and static.

By applying an inverse two-dimensional Fourier transform to the spectrum the
turbulence field is generated.

Sn(R, z) = / / dkg dk.h (kp, k) e*ritie, (4.3)
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4. Turbulence modeling
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Figure 4.1: Kolmogorov-like turbulence spectrum in 1D as described in (4.1).

Afterwards the turbulence is normalized to the background density.

n(R, z)

Oén

(5n(R, Z)ﬁnal - nO(pprobe)a (44)

where o5, is the standard deviation of én(R, z) and pprope the magnetic flux surface
where the turbulence structures are investigated.

A 2D wavenumber spectrum for 7; = 0, 7, = 2 and kyuee = Hem ™! is shown

in figure 4.2(a). A segment of the resulting turbulence pattern is shown in figure
4.2(b).

In addition to the Kolmogorov-like spectrum, a Gaussian turbulence spectrum
is used for the full-wave simulations, which allows for anisotropic structures. The
Gaussian wavenumber spectrum is taken from [25] and is given by

minbimax k - kz i 2 l2 kg si kz 2 l2 .
|h(kR,kz)|:l [ exp _ (krcosp sin )7 12 .. + (krsin 8 + k. cos B)" 12, |
8 8
(4.5)

where [ is the tilt angle with respect to the R-axis. [, and l,., are the correlation
lengths in R and z direction for 5 = 0°. All parameters are shown in figure 4.3(a). A
turbulence pattern obtained using the presented spectrum is shown in figure 4.3(b)
for a tilt angle of 5 = 30°.

To properly recover the turbulence characteristics using the synthetic diagnostic,
the turbulence is applied only as a turbulence band to the poloidal flux surface pp,
of interest. This is illustrated in figure 4.4. It is additionally masked with a Tukey
window function.
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4.1 Synthetic turbulence
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Figure 4.2: Generated synthetic turbulence for a realistic spectrum cf. (4.1) with
m =0, n2 = 2 and kinee = Hcm L. (a) The 2D turbulence spectrum and (b) a
segment of the turbulence pattern which is obtained by IFFT of (a).
z Imin = 0.3 cm, /Ihax = 0.6 cm,
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Figure 4.3: (a) Sketch of tilted turbulence structure, that can be generated using
a Gaussian turbulence spectrum (4.5). (b) Anisotropic turbulence pattern, that is
generated form (4.5) with I, = 0.3cm, lpax = 0.6cm and 8 = 30°.
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4. Turbulence modeling
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Figure 4.4: Schematic illustration of the velocity modeling for synthetic turbulence.
The turbulence pattern is shifted or rotated by a constant Az (slab) or Af (circular).
In the scope of this thesis, the spatial shift is set to 1 mm.

4.1.2 Perpendicular velocity modeling

The geometries used in the scope of this thesis are slab geometry and circular ge-
ometry, which are discussed in detail in chapter 6. For both geometries the density
fluctuations movement is obtained by constantly shifting (slab) or rotating (circular)
the turbulence pattern with a preliminary defined Az or A#, respectively.

This is schematically shown in figure 4.4(a) for slab geometry, where the imple-
mentation is straight forward.

For circular geometry, the turbulence pattern is rotated with respect to the plasma
center, as shown in 4.4(b). The synthetic turbulence pattern obtained with (4.3)
is rectangular. The desired turbulence band is cut out from a turbulence pattern
that overlaps the entire geometry. Therefore, for a circular geometry, the synthetic
diagnosis can only be applied to isotropic turbulence. Anisotropic structures will
therefore rotate accordingly and further change the turbulence spectrum at the
measurement, point with each displacement. This can significantly complicate the
analysis of the turbulence spectrum.

4.1.3 Turbulence correlation

The spatial correlation for the synthetic turbulence can be determined numerically.
Therefore the cross-correlation is used on the turbulence pattern, comparing turbu-
lence at R and R+ AR:

C(AR;R,Az) = /dzén*(R, 2)0n(R+ AR, z + Az), (4.6)

where * stands for the complex conjugate. The maxima of (4.6) Ciax With respect
to the displacement AR are plotted against each other. Determining the 1/e width
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4.2 Gyrokinetic turbulence simulations

of Chuax(AR) by Gaussian fitting gives the correlation length [g. Similarly, the same
computation can be performed for the correlation in z-direction.

In case of the Gaussian turbulence spectrum (4.5) the correlation length is already
defined directly in the initialization.

The correlation length of the turbulence is of interest because it plays a decisive
role in determining the validity of linear scattering, which will be discussed in the
section 5.1.

4.2 Gyrokinetic turbulence simulations

The modeling and prediction of turbulence for fusion plasmas in real geometries
is very complex. Nowadays, the most appropriate theory to describe core plasma
micro-turbulence in magnetized plasmas is the gyrokinetic theory. This approach
exploits the gyro-motion of charged particles around magnetic field lines, reducing
the 6D kinetic Vlasov equation by one dimension. This leads to a considerable
reduction of the system’s complexity.

The code, which produced the most realistic turbulence used in the scope of this
thesis, is the gyrokinetic turbulence code GENE [26]. It can afford local (flux-tube)
and global (full-torus) simulations of turbulence. Here, local simulations were used,
as the global ones can be computationally demanding.

A segment of turbulence obtained by GENE for ASDEX Upgrade shot #38420 is
shown in figure 4.5. It shows the more complex anisotropic, sheared structures in
the D-shape geometry of AUG.
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4. Turbulence modeling
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Figure 4.5: Turbulence pattern obtained by the gyro-kinetic turbulence simulation
code GENE for AUG shot # 38420. The shown segment corresponds to the upper

right part of the poloidal cross-section of AUG. The poloidal flux surfaces p,, are
shown in dashed black.



5 Doppler reflectometry modeling

To assess the Doppler reflectometry diagnostic power response and velocity mea-
surements, theoretical modeling is inevitable. Reliable descriptions can already be
obtained by analytical modeling under certain approximations. However, these ne-
glect various wave effects (wave trapping, non-linear plasma-wave interaction, etc.)
that may be important for realistic fusion plasmas, especially at high turbulence
levels (> 5%). Therefore, more complex time-dependent two-dimensional full-wave
simulations are useful. They include all parts of the electromagnetic waves by solv-
ing Maxwell’s equations directly in time and can thus capture wave effects even in
strongly fluctuating plasmas.

This chapter will first introduce into linear and non-linear scattering theory and
their validity limits. Then, the 2D full-wave simulation code IPF-FD3D, that was
used in this thesis, is presented. The last section discusses analytically the influence
of the turbulence wavenumber spectra on the velocity measurement.

5.1 Linear and non-linear power response

The dispersion relations discussed in section 3.1 only apply locally because the
plasma parameters were assumed to be constant. Since real plasmas are not ho-
mogeneous, in the wave equation (3.2) a spatial dependence of the refractive index
has to be taken into account. Assuming quasi-neutrality, i.e. V- E = 0, it turns out
to be a Helmholtz-type equation. For O-mode polarization and in one dimension it
has the form

{a—xz + kQ(x)} E=0, (5.1)

with k(z) = N(z) - w/c.

The presence of density fluctuations further complicates the spatial dependence
of the refractive index. However, if the fluctuation level is low enough so that
€ = on/ny < 1, perturbation theory can be applied. The background density ng
and the density fluctuations on can be considered separately:

n = ng + on. (5.2)

Then, the full solution for £ can be written as a power series E = Ey+ Eje' +O(€?),
where Fj is the unperturbed electric field. Applying (5.2) to (5.1) the first order

terms are:

w2

(V2 + K (2)] By = ——5Eo. (5.3)
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5. Doppler reflectometry modeling

The linear approach assumes that O(€?) is negligible and is also known as the Born
approximation [27]. The perturbed field F; corresponds the signal due to a single
scattering event at the density fluctuations of interest only. By further analyzing
higher orders of the perturbation (€2, €3, etc.), the total back-scattered field E can
be successively derived.

In the Born approximation, the complete back-scattered signal corresponding to
the Doppler reflectometer output can be derived employing the reciprocity theo-
rem [28],

I(t) +iQ(t) = C / drEg(r)‘5”<r’ b (5.4)

Ne

where C is a dimensionless constant and n. the background density at the wave’s
cut-off. The integral in (5.4) requires knowledge on the unperturbed electric field Ej.
When FEj is known, the signal can be computed for each turbulence realization for
further processing using the same analysis routines as for experimental data.

Ey can be obtained solving the unperturbed Helmholtz equation (5.1). For sim-
ple density profiles, solutions can be found analytically by using the Green’s func-
tion [29]. However, realistic plasma background parameters usually require numeri-
cal methods.

In fusion plasmas, linear scattering is mostly observed when probing in the core
region, where the turbulence level is low € < 0.1%. However, the transition from
linear to non-linear scattering does not only depend on the turbulence level, such
that theoretical estimates are useful. For normal incidence reflectometry the linear
theory was found to be valid for [30]

2 2, 2 rref ref
L L
v = (5_”> Gl e, < ) < 1. (5.5)

o c2 lR

Here, L™ = (VNy/N) is the refractive index gradient scale length, wy = 27 fy, I
and c are the probing frequency, the radial correlation length and the speed of light
in vacuum, respectively. The enhancement factor G taking into account the wave’s
polarizations is

1 for O-mode,
G = (w%—?wge)(wg—wge)-i—wge

2
2 2 2
(wO ~Wpe _wce>

(5.6)

for X-mode.

Accounting the so-called physical optics (PO) model [31], a similar critical turbu-
lence level 0. can be derived. The model assumes slab geometry with a corrugated
reflection layer which represents the turbulence. It provides an alternative expression
for the the complete back-scattered signal, including a dependency on the inflection
angle 6. However, other than perpendicular incidence in equation (5.4), the PO
model does not account for the density and magnetic field gradient of the plasma.
Joining both, the critical turbulence level of the PO model and the Born ap-
proximation approach, forms a new criteria. This combines the dependency on the
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5.2 2D full-wave simulations
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Figure 5.1: Convolution term (5.8) for three different turbulence spectra. I" reduces
the non-linearity factor «y cf. (5.7) for the white spectrum. For Kolmogorov-like and
Gaussian spectra, which exhibit a spectral decay, v increases strongly, especially
for high wavenumbers. This reduces the critical turbulence level that marks the

transition to the non-linear regime.

background electron density and magnetic field with oblique incidence probing [32]:

on\? G2, (L™ [(hxh) (k)]
- (1) () [5 n

where h(k,) is the input turbulence spectrum.
The additional convolution term

can be calculated numerically for different synthetic spectra. Figure 5.1 shows I" for
a white spectrum with h(k, ) =1 for |k | < 21em™!, a Kolmogorov-like spectrum
with 71 =0, 7o = 2 and kinee = em ™! and for a Gaussian spectrum cf. 4.5 with
Imin = lmax = 0.3cm and 3 = 0°. All assumed spectra are symmetric to k| = 0cm ™.
For the white spectrum, the additional I" reduces the non-linearity factor of normal
incidence since the convolution of two top-hat functions yields a triangular shape.
For more realistic Kolmogorov-like and Gaussian spectra that exhibit spectral decay,
I increases, especially for higher wavenumbers. This can greatly reduce the critical

turbulence level that marks the transition to the nonlinear regime.

5.2 2D full-wave simulations
Realistic fusion plasmas can have high fluctuation levels (> 5%) and fast varying

plasma parameters. Thus, i.e. multi-reflections, wave trapping and frequency mix-
ing can occur, such that the Born approximation will not describe the plasma-wave
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5. Doppler reflectometry modeling

interaction properly. Time-dependent full-wave methods that give direct solutions
to the Maxwell equations, have to be used.

In this thesis, the Finite-Difference Time Domain method based full-wave code
IPF-FD3D [33] developed at the IGVP Stuttgart is used. The code simulates the
propagation and scattering of the electromagnetic beam in two or three dimensions.
In this work, the two-dimensional version has been employed.

The plasma is modeled by the electron equation of motion for the plasma current J
in the cold plasma approximation

0 .
—J = w2, E — weeJ X By. 5.9
T 0Wpe 0 (5.9)
The background density and magnetic field are included via the plasma frequency w,.
and the electron cyclotron frequency we., that were already introduced in (3.4).
By is the unity vector in direction of the background magnetic field By. Together
with the two Maxwell equations for the electric and the magnetic field

0 1 1
0 1
—H=—— FE 11

the three equations (5.9)-(5.11) build a complete system. Thus, this approach com-
putes all components of the wave and is therefore called full-wave analysis.

The partial differential equations are implemented as finite difference equations
on a spatial Cartesian Yee grid [34]. This method addresses the dependence of the
electric and magnetic field due to the curl in Maxwell’s equations. It uses two stag-
gered grids, one for the magnetic field and one for the electric field and the current,
displaced by half a grid step. A temporal leapfrog scheme is applied. The electron
response (5.9) is integrated separately using a modified Crank-Nicolson method.

The input to the simulation is a spatial array of the background density and the
background magnetic field in three components B;, B,, and B,. The reflectometer
antennas are modeled by fundamental Gaussian beams positioned at the edge of the
plasma grid. The irradiation angles 6 are defined with respect to the R-axis. The
simulation is able to probe with multiple frequencies at once. To ensure sufficiently
refined time stepping, the length of a simulation time step At is determined by a
reference frequency that is larger than any probing frequency. For signal discrimina-
tion all frequencies that are used need to be integer multiples of a constant frequency
step Af, here 50 MHz and 200 MHz for X- and O-mode, respectively.

The output signal of the simulation is a complex heterodyne signal at the antenna
position, like obtained in the experiment. The simulation must run for a sufficiently
long time to capture all scattering effects of the waves. To obtain a time-dependent
signal, the simulation is run on successive turbulence frames. For each frame frozen
turbulence is assumed, since the time scale of turbulent density changes (us) is much
larger than the wave propagation time (ns).
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5.3 Impact of the density wavenumber spectrum on the perpendicular velocity measurement
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Figure 5.2: Full-wave simulation on gyrokinetic turbulence simulation using
GENE. The black contours represent the waves electric field. More dark contours

correspond to a stronger electric field. (adapted from [7])

A simulation setup using IPF-FD3D is shown in figure 5.2. It shows the prop-
agated electric field as black contours on the density field obtained from gyroki-
netic turbulence simulations using the code GENE [26]. The antenna is placed at
(R, z) = (2.265,0.3) m. The contours show the wave’s propagation, reflection and
back-scattering at its cut-off. At the scattering region near the turning point, where
the contours get stronger, the electric field reaches a maximum.

5.3 Impact of the density wavenumber spectrum on
the perpendicular velocity measurement

Since the probing beams in Doppler reflectometry are Gaussian with a certain beam
waist wg, the wavenumber range detected by the reflectometer is also Gaussian
with a width Ak. Consequently, this will affect the back-scattered signal as the
fluctuation power depends on the wavenumber. The effect can be captured by
convolution C(k) of the probing beam with the turbulence spectrum. Considering
the convolution theorem, this results in a multiplication in Fourier space

Cy, (k) = h(k)Gy, (k). (5.12)
Here, Gy, (k) is the Gaussian beam field distribution

—(k—k )2

G, (k) = e 2, (5.13)

where k| is the dominant wavenumber and Ak the spectral resolution, which can
be obtained using equation (3.14) or the weighting function method presented in
section 3.3.
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5. Doppler reflectometry modeling

Thus, a decaying density wavenumber spectrum, such as a Kolmogorov-like spec-
trum cf. (4.1) strongly affects the convolution (5.12) and thereby the back-scattered
signal. It deforms the original Gaussian beam distribution and displaces the max-
imum towards a smaller wavenumber %, con,. The main back-scattered signal thus
corresponds to a lower wavenumber than initially probed. Since the perpendicular
velocity is directly related to the wavenumber v, = wp/k,, this also affects the de-
termination of the velocity. For density fluctuations moving with v, ;, a velocity

V] exp = X - V] in, (514>

is expected to be measured, where X = k| conv/k1.
The scaling factor X can be obtained analytically by evaluating (5.12) and deter-
mining the maximum’s wavenumber £ .on, that satisfies

9C%, (k)
—==0. 5.15
o0 (5.15)
For a Kolmogorov-like turbulent wavenumber spectrum with a spectral decay
h(k) = k™", (5.16)

solving (5.15) results in a maximum at:

ki + /K2 — AnAk2
. 1
5 (5.17)

kJ_,conV -

Thus, the scaling factor in (5.14) is

e 1 1 AR
X = Bheow 2y 2, 28
o2 1T

<1. (5.18)

Analytic results for n =0, n =1 and n =2 are shown in figure 5.3(a) in blue.
The corresponding spectral resolution is shown in figure 5.4. It is computed us-
ing (3.14) assuming R, =0.2m, 6 = 10° and wy =22mm in a circular geome-
try with R. = 0.4m. For a white turbulence spectrum where the spectral index
n = 0, there is no difference between the probed wavenumber and the mainly back-
scattered wavenumber. If 7 > 0, large deviations up to 30% can be expected for
small wavenumbers. Results for a Kolmogorov-like spectrum, with 7, = 0, 1, = 2,
Finee = Hem ™! is shown in red. The data points were calculated numerically to cap-
ture the jump due to the spectral knee. However, for more realistic spectra, where
n > 0 for k < kinee, a smaller jump but also larger deviations at small wavenumbers
can be expected.

Note that this also results in a condition for the calculation:

k3 —4nAk* > 0. (5.19)

Thus, in a certain parameter range, where the probed wavenumber is small and the
spectral width Ak is usually large, no maximum can be determined and the mea-
sured velocity can not be defined.
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Figure 5.3: Scaling factor X cf. (5.14) for different turbulence spectra. The
used spectral resolution is shown in figure 5.4. (a) Analytic results of n-decay
spectrum error (5.17) for different 1 (blue) and numerical result for a Kolmogorov-
like spectrum with 71 = 0, 72 = 2 and kypee = 5 cm™! (red). (b) Analytic results

for Gaussian spectrum (5.21) for different correlation lengths I,.
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Figure 5.4: Spectral resolution (3.14) for different wavenumbers, that is used for
figure 5.3. R, =0.4m, R, = 0.2m, wy = 22mm and # = 10° are kept constant.
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5. Doppler reflectometry modeling

A similar expression can be obtained for the Gaussian turbulence spectrum. From
equation (4.5) it can be derived that

h(k,) = \/lg_ﬁ exp [—2k2/8] (5.20)

where [, is the correlation length in z-direction. Then, the resulting scaling factor
is

X = [1 + (5.21)

AK2 2 } !
which is shown in figure 5.3(b) for several correlation lengths /.. In contrast to the
n-decay the scaling factor is not directly dependent on the probed wavenumber k| .
The error increases for higher wavenumbers due to the spectral resolution Ak only.
For slab geometry where the spectral resolution cf. (6.1) is constant also X will be
constant.
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6 Simulation results using synthetic
turbulence

Recent research is concerned with the occurrence of poloidal asymmetries in the
measurement of the perpendicular velocity [8, 9, 10, 11]. The measured perpendicu-
lar velocity was found to depend on the poloidal measurement position in some, but
not all, experiments. The reason for the occurrence of these deviations is not yet
completely understood and a diagnostic effect cannot be excluded. The use of meth-
ods such as full-wave simulations is therefore essential for a better understanding
of the diagnostic response by taking into account all types of plasma-wave interac-
tions during the simulation. Previous perpendicular velocity studies using full-wave
methods have already been presented in [35].

For studies focusing on one specific turbulence feature, synthetic turbulence as
presented in chapter 4 is particularly suitable. Turbulence patterns of isotropic and
anisotropic turbulence spectra can rapidly be generated and varied. Perpendicu-
lar velocities can be investigated in different geometries by shifting the pattern.
Realistic poloidal plasma shapes, such as the D-shape at AUG, are approximated
using a straight slab geometry and a circular geometry. For the latter, the radius
of curvature of the plasma is also taken into account. The perpendicular velocity is
implemented as a constant bulk velocity that can directly be compared to the sim-
ulation result. Clearly, full-wave analysis of gyrokinetic turbulence simulations will
be of great use in the future, as it accounts for the complexity of realistic turbulence
in its entirety. However, this is beyond the scope of this thesis. Preliminary results
are discussed in the outlook 7.2.

After presenting the input geometries used and the simulation setup, this chapter
presents the results on synthetic turbulence with constant velocity. The velocity
measurements are investigated with respect to non-linear scattering regimes, differ-
ent turbulence spectra, variation of the antenna position and anisotropic structures.

6.1 Plasma modeling and simulation setup

The background plasma profiles of electron density n. and magnetic field B are
shown in figures 6.1(a) and 6.1(b), respectively. Only the toroidal field B; is shown
as the others are set to zero, since usually B,, By < B;. They are adapted from
the midplane of AUG shot #31260, which was already investigated regarding non-

linearities in the back-scattered power using full-wave analysis [7, 6].

For the simulations two different geometries are used. One of them, is the so-called
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Figure 6.1: (a) Background density profile n.(ppo1) and (b) background magnetic
field profile By(R), adapted from AUG # 31260.

slab geometry. Here, the radius of curvature is assumed to approximate R. = oo
so that the refractive index layers are completely flat. This geometry significantly
simplifies the physical problem an thus makes the formulation and comparison to
analytical predictions much easier. The slab geometry is presented in the density
contour plot 6.2(a). Therefore, n, and B, from figure 6.1 are elongated along the
z-axis, remaining constant along R. To account for more realistic plasma shapes,
curvature must be considered by using a circular geometry. Therefore, the density n,
on the midplane is rotated about the center. The obtained density contour is shown
in figure 6.3(a). B, is stretched along z similar to the slab geometry.

Figures 6.2(b) and 6.3(b) show the simulation grids for both geometries that are
used in the following simulations. The plots show contours of p,, the X-mode cut-off
frequencies f., x that are obtained using (3.7). The O-mode cut-off contours are not
shown since they are aligned with the poloidal magnetic flux surfaces. The antenna
positions are marked in both figures in black. They are at (R,z) = (2.3,0.3) m
for the slab geometry and on the midplane at (R, z) = (2.3,0.0) m for the circular
geometry. The Gaussian beams have a waist of wy = 22mm and are directed
upwards. Exemplary rays are indicated in for O-mode and X-mode. Wavenumbers
ki =2—20cm™! are probed with frequencies fo = 58 — 77 GHz, fx = 92 — 98 GHz
using injection angles in a range of 6 =0 — 25°.

The turning points of O-mode and X-mode simulations are shown in blue and
red, respectively. Frequencies and angles are optimized such that they approach
ppoi = 0.9 using a raytracing code similar to TORBEAM ([36]. Thus, the plasma
curvature radius is approximately R, = 0.4m for circular geometry at poloidal flux
surface of interest. AUG plasmas have usually a higher curvature radius of approx-
imately R. = 0.75m. An increase in the curvature radius will of course decrease
the spectral resolution regarding (3.14). Nevertheless, this still represents curvature
radii of smaller experiments.
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lel9

Figure 6.3: (a) Full circular geometry and (b) the simulation domain. The turning
points and exemplary beam paths, that are determined using raytracing are shown
for O-mode (blue) and X-mode (red). The antenna is at (R, z) = (2.3,0.0) m.
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Figure 6.4: Exemplary Doppler spectra output using the full-wave analysis. The
data is obtained for the realistic turbulence wavenumber spectrum (cf. section 6.2.2)

in circular geometry using X-mode probing at ppo = 0.9.

The propagation velocity of density fluctuations is fixed at 10km/s for all sim-
ulations. This is in an order of magnitude that is normally measured in fusion
experiments. However, the velocity is completely independent of the simulation
and it is only used in the signal analysis. To obtain the Doppler spectrum, a
At = Az /v, between the turbulence frames is required in the Fast-Fourier Trans-
form. In this work, the turbulence pattern is shifted by Az = 0.001m at each
forwarding. The time step size is thus At = 1 x 107"s, resulting in a maximum
frequency of fuax = 1/(2At) = 5MHz in the Doppler spectrum. This is sufficient to
fully map all Doppler peaks.

Typical Doppler shifted spectra that are obtained from the full-wave simulation
are shown in figure 6.4 for a realistic turbulence spectrum with n; =0, 7, = 2,
Finee = Dcm ™. The data is obtained in circular geometry using X-mode. Similar to
the analysis presented in chapter 3, the back-scattered powers P and perpendicular
velocities v, can be obtained using Gaussian fits. In the figure, the fits are indi-
cated dashed black. All spectra clearly show a Doppler shift that increases with the
probed wavenumber. For the wavenumbers k) < kinee (blue and orange line), where
the turbulence spectrum is assumed to be constant, the approximately same power
is obtained. For larger wavenumbers, the power steadily decreases with increas-
ing the wavenumber, which already indicates the decay in the density wavenumber
spectrum.
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6.2 Investigations of diagnostic effects in perpendicular velocity measurements

6.2 Investigations of diagnostic effects in
perpendicular velocity measurements

6.2.1 Turbulence level

Previous studies have shown that high turbulence levels can significantly affect the
scattering of electromagnetic waves in reflectometry experiments [6, 7, 25]. With
an increasing turbulence level, multiple scattering events can lead to an increase of
the back-scattered power, so that (3.9) loses its validity. The transition to nonlinear
scattering can be estimated theoretically with the ~ factor (5.7), which could be
confirmed through experimental and full-wave results.

The effect of higher turbulence levels on the perpendicular velocity has already
been studied in theory [37]. An influence on the measured velocity is not expected
in homogeneous plasmas. Full-wave results, using slab geometry, could confirm this
for turbulence levels up to 10% [35].

Increasing turbulence levels are studied for slab geometry using X-mode polariza-
tion. A Kolmogorov-like turbulence spectra with n; = 0, 172 = 2, kinee = Hem ™! is
used. The turbulence pattern is shifted only 40 times by Az. Thus, only a resolution
of Af = 0.1 MHz is obtained in the Doppler spectrum. Figures 6.5(a) and 6.5(b)
show the back-scattered power P and the obtained velocity v, plotted against the
turbulence level dn/ng, respectively.

As a reference, a linear power response cf. (3.9) is indicated dashed black in
the power response results in fig. 6.5(a). It shows, that even for this low resolu-
tion simulations the power response is linear until it reaches turbulence levels of
on/ng >1%. At higher turbulence levels, the back-scattered power saturates. This
confirms other studies using the physical optics model [32] and full-wave simulations
[32, 6]. Usually, however an enhanced response due to multiple scattering events, is
observed before saturation occurs. This is probably not visible in the results here
due to the low frequency resolution.

The obtained perpendicular velocities in fig. 6.5(b) are all around the input ve-
locity. In between the different probed wavenumbers, slight deviations are to be
expected due to the underlying turbulence spectrum and the probing beam width,
as discussed in section 5.3. The perpendicular velocities for a fixed probed wavenum-
ber show no significant variation when increasing the turbulence level. First small
deviations are observed when applying turbulence levels on/ng > 1%.

In the following, no correlation between the v factor for the reflectometer power
response and a diagnostic effect on the perpendicular velocity measurement is as-
sumed.

6.2.2 Isotropic turbulence wavenumber spectra

Simulations for several different isotropic turbulence spectra are performed to in-
vestigate further effects on the velocity measurement. The investigated turbulence
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Figure 6.5: Analysis of nonlinear effects in (a) the power response and (b) the
perpendicular velocity measurement using full-wave simulations. The results are
obtained in slab geometry using X-mode probing, for only 40 turbulence frames.
The power response shows linear response for dn/ng < 1%. The perpendicular
velocities are not much affected by the turbulence level.

spectra with isotropic turbulence are:
e White spectrum: h(k) =1for 0 <k <21 cm™!,
e Gaussian spectrum: h(k) = eq. (4.5) with L = lhax =0.3 cm, = 0°,
e Realistic spectrum: h(k) = eq. (4.1) with n; = 0,72 = 2, kipee = 5 cm™ L.

The correlation lengths are determined numerically as described in section 4.1.3
and are listed in table 6.1. The correlation length of the Gaussian spectrum can be
confirmed. Since the white spectrum does not undergo spectral decay, it contains
more smaller structures and its correlation length is significantly smaller.

All simulations are performed with a turbulence level of dn/ng = 0.1%. The non-
linearity factors v for the different turbulence spectra are determined using (5.7)
and are shown in figure 6.6. For the O-mode, no deviations in the measured power
spectrum are expected. For the X-mode, the Gaussian and the realistic spectrum
measurements are already performed for v > 1 at higher probed wavenumbers. This
could lead to more back-scattered power due to multiple scattering. The previous
results in section 6.2.1 have shown that no deviation in the velocity is expected even
in the nonlinear regime. However, as discussed in section 5.3, deviations caused by
the probing beam width are to be expected. Furthermore, they will strongly depend
on the underlying turbulence spectrum.
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6.2 Investigations of diagnostic effects in perpendicular velocity measurements

g (in cm) [, (in cm)
White 0.086 £+ 0.001 | 0.088 £ 0.003
Gaussian 0.29 £0.05 0.31 £0.02
Realistic 0.34 £0.01 0.35+0.02

Table 6.1: Correlation lengths for all three turbulence spectra presented in sec-
tion 6.2.2. The correlation lengths are computed numerically as described in sec-
tion 4.1.3.
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Figure 6.6: Non-linearity factor v cf. equation (5.7) for dn/ng = 0.1% in circular
geometry. The data points correspond to the turning points in figure 6.3, respec-
tively. The O-mode probing is almost completely in the linear regime for all spectra.
The X-mode probing for the Gaussian spectrum and the realistic spectrum enters

the nonlinear regime for higher wavenumbers.

The results of the full-wave simulations on the three different spectra are presented
for slab geometry in figure 6.7. The obtained turbulence wavenumber spectra are
shown on the left side. There, the input spectra are shown in gray. They are
arbitrarily scaled so that the spectra can easily be compared with the full-wave
results. Note that, since P oc h?(k) for the realistic spectrum a = 7? is the expected
spectral decay. The direct simulation results P are shown in the dark colors for
O-mode in blue and for X-mode in red. Corresponding fits are included by dashed
lines for the white spectrum and the realistic spectrum.

The results for the perpendicular velocities are shown on the right. O-mode and
X-mode results in blue and red, respectively. The data points include an uncertainty
band, that is mainly due to the spectral resolution Ak that is obtained via (3.14).
The input velocity is shown in gray. The velocity vy ex, cf. (5.14) that is expected
due to the probing beam width, is shown dashed in the color of the respective po-
larization. Even if it is hardly visible for slab geometry, the expected velocities vary
depending on their polarization, since the probing frequencies f, differ decisively.
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Figure 6.7: Full-wave results of turbulence wavenumber spectrum (a, ¢, e) and
perpendicular velocities (b, d, f) in slab geometry for a white spectrum (a, b),
a Gaussian spectrum (c, d) and a realistic Kolmogorov-like spectrum (e, f). The
results for O-mode and X-mode are shown in blue and red, respectively. The spectra
include direct P and corrected P.o. power results. The perpendicular velocities are
compared to the expected velocity v exp due to the probing beam width. For more
details refer to the text.
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6.2 Investigations of diagnostic effects in perpendicular velocity measurements

Particularly striking for all obtained density wavenumber spectra 6.7(a, ¢, e) is
the consistently too steep spectral decay for large wavenumbers k; > 5 cm™!. The
deviation is especially evident for the white spectrum 6.7(a) where no decay is
expected. This effect was already observed in 2D full-wave simulations [32, 33, 35]
and can be explained by the so-called scattering efficiency . It takes into account
that the actual scattering region is not perfectly aligned with the cut-off, as it can
be studied in detail using the weighting function as shown in figure 3.3(b). The
resulting error can be corrected by [32]

Lref 2/3 )
1+ <W) k2, (6.1)
0

where L™ is the refractive index scale length, ky = 27 fy/c is the vacuum wavenum-
ber, k, is the probed wavenumber and P is the initially obtained back-scattered
power. Equation (6.1) is deduced solving the Helmholtz equation in slab geometry
analytically using O-mode polarization cf. equation (5.1) and assuming a linear den-
sity profile. Applicability for other geometries and X-mode polarization is achieved
due to L™. The corrected back-scattered power P..,, is shown in light colors in all
obtained spectra.

For the white spectrum in fig. 6.7(a), the correction (6.1) improves the results,
especially for the larger wavenumbers. However, the back-scattered power then
increases slightly with the wavenumber. Furthermore, the power measured at smaller
wavenumbers, which already fits well without the correction, also increases. Since
the study of the white spectrum, cf. figure 6.6, is done in a fully linear regime, an
increased power response is not expected. The full-wave results for the Gaussian
spectrum in fig. 6.7(c) show similar behavior. The corrected results also appear to be
in better agreement, but an undesirable increase is observed at smaller wavenumbers.
The realistic spectrum in fig. 6.7(e) is also well captured. The full-wave results show
the plateau and spectral decay. The knee position is well defined and at the expected
location. The correction agrees better with the input spectrum, although it slightly
over-corrects for all wavenumbers.

The perpendicular velocities that are shown in fig. 6.7(b, d, f) are in good agree-
ment with the expected velocity for all spectra. Due to the infinite curvature radius
the spectral resolution cf. (3.14) is very good and the expected deviations are con-
sequently small. The velocity for the white spectrum in fig. 6.7(b) is expected not
to deviate at all since n = 0 in eq. (5.17). This could nicely be reproduced by the
full-wave simulations. For the Gaussian spectrum, the velocities shown in fig. 6.7(d)
expresses the small constant deviation towards lower velocities. The velocity results
in fig. 6.7(f) for the realistic spectrum also match very well with the expected ve-
locity. The obtained drop at the knee position can also be seen in the full-wave data.

Pcorr =P

The results for the circular geometry are shown in figure 6.8. The plots are
structured and color-coded in the same way as for the slab geometry.

The density-wavenumber spectra are shown in figures 6.8(a, ¢, e) on the left.
Similar to the slab geometry, all spectra show the slightly over-corrected P, results.
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Figure 6.8: Same as figure 6.7 for full-wave simulations in circular geometry. Due

to the curvature radius the spectral resolution is lowered. Thus, the uncertainty

band of the full-wave perpendicular velocity results (b, d, f) increases. Further, the

expected velocity v cxp and the full-wave results show increased deviations and the

difference in between O-mode and X-mode perpendicular velocity results is more

pronounced.
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6.2 Investigations of diagnostic effects in perpendicular velocity measurements

Nevertheless, they lead to better accordance with the input spectra. It should
be emphasized that again the knee position can be captured well in the realistic
spectrum in fig. 6.8(e).

The results for the perpendicular velocities are shown on the right-hand side
in figures 6.8(b, d, f). Due to the plasma curvature, the spectral resolution Ak
cf. (3.14) is significantly decreased compared to the spectral resolution in the slab
geometry. On the one hand, this leads to an increased uncertainty in the velocity
and, on the other hand, to an increased deviation to be expected due to the probing
beam width. Furthermore, the expected differences in O-mode and X-mode v} exp
get more pronounced.

The full-wave results clearly show no deviation for the white spectrum in fig.
6.8(b) and thus confirm the expected velocity. For the Gaussian spectrum in fig.
6.8(d), deviations of different magnitudes are to be expected depending on the po-
larization, both of which are almost constant for all wavenumbers. The full-wave
results show the two different levels of deviation. However, the slightly better agree-
ment is observed for larger wavenumbers k; > 10cm™!. For smaller wavenumbers,
there is more variation within the uncertainty band. Exceptionally good agreement
is obtained for the realistic spectrum in fig. 6.8(f). It can clearly be seen that the
full-wave results show the differently strong drop at the knee position which is to be
expected depending on the polarization.

In summary, the density wavenumber spectra, that are obtained with the full-wave
simulations, show good agreement with the input spectra. The scattering efficiency
correction leads to results that are closer to the input spectra. However, the cor-
rection seems to over-correct the results. This is particularly unfavorable for small
wavenumbers k| < 5 cm™!, where good results are obtained even without the cor-
rection. This indicates that the applicability of (6.1) requires further investigation,
which is beyond the scope of this thesis.

For all input spectra, the full-wave results of the perpendicular velocities confirm
the analytically derived deviations presented in section 5.3. There is a clear depen-
dence of the velocity deviation on the underlying turbulence spectrum, that can lead
to deviation in the measured velocity when spectral decays are pronounced. The
effect is especially significant for curved plasmas which have a larger uncertainty Ak.
Turbulence in fusion plasmas is expected to be Kolmogorov-like and therefore ex-
hibit spectral decay. Furthermore, experimental-like geometries are curved and the
spectral resolution is therefore limited (see fig. 3.3(a)). The observed effect can also
lead to apparent poloidal asymmetries when the perpendicular velocity is measured
on different wavenumbers at different poloidal locations in the plasma. However,
the prediction of the deviation always requires the knowledge of the underlying tur-
bulence spectrum. This might be difficult when applied to the experiment. Since
the experimental measurement of the turbulence spectrum is also subject to several
uncertainties, e.g. non-linear response, a further evaluation regarding the perpen-
dicular velocity might be even more unreliable.
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Figure 6.9: The antenna positions and the corresponding turning points for (a) O-
mode and (b) X-mode that are used to study diagnostic effects, that depend on the
poloidal position of the probing antenna. Exemplary beam paths are shown in the
corresponding colors. Poloidal magnetic flux surfaces pp, are indicated in dashed

black. The X-mode cut-off frequency layers f., x are shown in (b) in dotted gray.

6.2.3 Poloidal variation of antenna positions

The analysis of different antenna positions aims at effects due to beam propa-
gation on different background. For this reason, the perpendicular velocity re-
sults of different antenna locations are compared. The antennas are located at
(R,2)4 =(2.3,0.0)m, (R, 2)p =(2.25,0.12)m and (R, z)c = (2.12, 0.43)m. Thereby,
they measure at the same distance from the plasma edge. The antenna locations
correspond to a poloidal angle of 0°, 22.5° and 45° with respect to the midplane.
All antennas are pointed upwards. The antenna positions and the turning points,
that are determined using raytracing, are shown in figure 6.9. Exemplary rays are
shown for demonstration.

The background magnetic field is indicated by the contours of the X-mode cutoff
frequencies f., x. Unlike the O-mode cut-off frequency, which is aligned with the
magnetic flux surfaces, these are not symmetric about the plasma center. This orig-
inates from the X-mode dispersion relation (3.7), which also depends on the back-
ground magnetic field, that varies as a function of R (see fig. 6.1). The dependency
is also reflected in the input frequencies f; for X-mode that are used for reaching
ppoi = 0.9. The more upwards the antenna, the higher the frequencies that are
required (fp 4 = 92.4 —96.8 GHz, fop = 93.1 —98.5GHz, foc = 95.3 —101.4 GHz).
Thus, since fj is related to the spectral resolution (3.14) a variation of the antenna
position might lead to stronger deviations due to the probing beam width. For O-

44



6.2 Investigations of diagnostic effects in perpendicular velocity measurements

O-mode
13} + A(2.30,0.00)m «  A(2.30,0.00)m
« B (2.25,0.12)m B (2.25,0.12)m
12 + « C(2.12,0.25)m « C(2.12,0.25)m
== Vi,exp == Vi,exp
Q 11 . —— input v input v
£ 10}
_|
> o
8r.
7 -
25 5 7.5 10 12.5 15 17.5 20 25 5 7.5 10 125 15 175 20

k., (cm™1) ki (cm™1)

Figure 6.10: Full-wave results of the perpendicular velocity with a corresponding
uncertainty band for a poloidal variation of the antenna position for (a) O-mode and
(b) X-mode. The realistic spectrum cf. section 6.2.2 is used. Corresponding antenna
positions and turning points are shown in figure 6.9. The expected deviation due
to the probing beam width v cxp is shown dashed in matching colors. While the
O-mode results do not differ at all, the X-mode results slightly tend to decrease for
varying the antenna position more upwards.

mode the same frequency range can be applied for all antennas, so that no further
deviation is to be expected.
The turbulence is modeled using the realistic turbulence spectrum, that is intro-

duced in section 6.2.2. The simulations are performed using a turbulence level of
on/ng = 0.1%.

The obtained results are shown in figure 6.10(a) and 6.10(b) for O-mode and X-
mode, respectively. Each plot includes the full-wave results for the perpendicular
velocities from all three antennas, color-coded according to figure 6.9. The input
velocity is shown in gray. The expected velocities v ¢, due to the probing beam
width are indicated dashed.

Both O-mode and X-mode results show good agreement with the expected veloc-
ity for all antenna positions. The differently pronounced drops with respect to the
used polarization, cf. figure 6.8(f), can be confirmed. The O-mode results are in
perfect agreement within the different antenna positions. The velocities measured
in X-mode decrease slightly as one approaches further poloidally. However, the
analytical expected velocities, which take into account the changing input frequen-
cies, predict much less pronounced differences. Therefore, another diagnostic effect
cannot be excluded. Nevertheless, the deviations are only small. According to the
observed trend, more significant deviations would correspond to antennas that are
directed even further upwards than antenna C. To measure there, the beams would
have to be radiated almost parallel to the cut-off contours, so that corresponding
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Figure 6.11: Turbulence pattern, that are generated using (4.5) with ;i = 0.3 cm
and lpax = 0.6 cm. The turbulence pattern are used to studying anisotropic turbu-

lence structures. Tilt angles of § = 0,4+ 30° are investigated in slab geometry.

results would not be meaningful.

No further significant deviations can be observed. Strong poloidal asymmetries
that originate from differing antenna positions can be excluded.

6.2.4 Anisotropic turbulence

Realistic turbulence usually exhibits anisotropic structures due to sheared flows.
These can also be investigated with synthetic diagnostics using the Gaussian spec-
trum cf. (4.5). As already discussed in chapter 4, the circular geometry cannot be
used here because the velocity is modeled by rotation with respect to the plasma
center. Therefore, the tilt angle rotates with and changes with respect to the an-
tenna. For this reason, the influence of anisotropic turbulence on the perpendicular
velocity measurement is studied in slab geometry only.

Three different spectra are examined corresponding to three different tilt angles.
The used turbulence patterns are shown in figure 6.11. Tilt angles 5 of 0°, 30° and
-30° are used. The turbulence structures are elongated using [, = 0.3cm and
lmax = 0.6 cm, which are the correlation lengths [, and [y, respectively, when there
is no tilting. As sketched in figure 4.3(a), a tilt leads to a change in the correlation
length. The correlation lengths corresponding to the differently tilted structures are
listed in table 6.2.

This also affects the transition to the nonlinear scattering regime. The results for
the v cf. (5.7) are shown in figure 6.12. A turbulence level of 6n/ny =0.01% is used.
Due to the increased correlation length, tilting of the structures leads to an increase
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lg (in cm) | [, (in cm)
g=0° 0.60 4+ 0.02 | 0.32 4+ 0.04

B ==430°{0.544+0.02 | 0.42 £ 0.03

Table 6.2: Correlation lengths for all three turbulence pattern, that are shown
in figure 6.11. The correlation lengths are computed numerically as described in

section 4.1.3.
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Figure 6.12: Non-linearity factor v cf. equation (5.7) for dn/ng = 0.01% in slab
geometry. The Gaussian spectrum with [, = 0.3cm and [, = 0.6 cm is used.
Varying the tilt angle S leads to a change in the correlation lengths cf. table 6.2.
This leads to an increase in ~.

in the non-linearity factor. However, since the turbulence level is in general lowered
with respect to the previous sections, v is not exceeding 1 significantly.

The full-wave results are presented in the fig. 6.13 for O-mode and in fig. 6.14
for X-mode. The non-tilted structure results are shown in blue and red for O-mode
and X-mode, respectively. The tilted results are shown in green and purple.

The obtained perpendicular wavenumber spectra are shown on the left. The cor-
rected back-scattered power Py, regarding the scattering efficiency (see eq. (6.1))
is not applied here to provide better clarity. Due to the tilt, not only the correlation
length but also the corresponding turbulent wavenumber is affected. Since Doppler
reflectometry is probing in the perpendicular wavenumbers only, a tilt leads to a
steepened spectrum. The analytical spectra for 5 = 0° and § = £30° cf. (5.20), are
shown in black in solid and dashed line-styles.

Both full-wave results for the density wavenumber spectra of the O-mode in
fig. 6.13(a) and of the X-mode in fig. 6.14(a) show the mentioned differences in
the wavenumber spectra. Nevertheless, they do not agree completely with the ana-
lytical spectra. Tilted and non-tilted spectra are less deviated than expected. This
can have several reasons, such as the slight non-linearity or the scattering efficiency
correction, which was not applied here.
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Figure 6.13: Full-wave results using O-mode for different tilt angles. The used
turbulence pattern are shown in figure 6.11. (a) The density wavenumber spectrum
results. The analytic spectra are shown in solid and dashed line-styles. (b) The
perpendicular velocities. The full-wave results include an uncertainty band. The

expected velocity v cxp due to the probing beam width in shown in dashed.
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Figure 6.14: Full-wave results using X-mode for different tilt angles. The used
turbulence pattern are shown in figure 6.11. (a) The density wavenumber spectrum
results. The analytic spectra are shown in solid and dashed line-styles. (b) The
perpendicular velocities. The full-wave results include an uncertainty band. The

expected velocity v cxp due to the probing beam width in shown in dashed.
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6.2 Investigations of diagnostic effects in perpendicular velocity measurements

The perpendicular velocities are shown on the right in fig. 6.13(b) for O-mode
and in fig. 6.14(b) for X-mode. The input velocity is shown in gray. The expected
velocities due to the probing beam width v ¢ is shown in dashed. Due to the
change in the correlation length, which directly affects the scaling factor (5.21) the
velocities slightly vary depending on the tilt. Since the simulations are performed in
slab geometry, the spectral resolution is fine and the expected deviation is generally
small. For both wave polarizations, the full-wave results show good agreement with
the expected deviations.

Neither between the tilted and non-tilted structures, nor between the different
directional tilt angles an additional significant diagnostic effect can be observed.
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7.1 Summary

In the recent past, Doppler reflectometry measurements of the perpendicular propa-
gation velocity of density fluctuations have revealed poloidal asymmetries on various
toroidal fusion devices.

This work investigated whether diagnostic effects could explain these observa-
tions. For this purpose, both analytical and full-wave simulation approaches were
employed.

Analytical investigations showed that the measured perpendicular velocity can be
lowered, if the underlying density wavenumber spectrum exhibits spectral decays.
The magnitude of the deviation depends on the width of the probing beam and the
strength of the spectral decay. An analytical expression could be obtained that can
predict these deviations. Note that the application of this analytical approach in
experiments can be difficult as for the standard measurement case the wavenumber
spectrum is not known.

For the full-wave simulations the code IPF-FD3D, that is developed at the IGVP
Stuttgart, was used. The code is based on a finite-difference time-domain method to
simulate the propagation and scattering of electromagnetic beams in cold plasma.
The full-wave simulations were performed in slab and circular plasma geometry
in both O-mode and X-mode wave polarization. The perpendicular propagation
velocity of density fluctuations was studied using synthetic turbulence that was
generated based on different spectra. Isotropic turbulence was obtained using a
white spectrum, a realistic Kolmogorov-like spectrum and a Gaussian spectrum.
With the latter, also anisotropic turbulence was generated.

The influence of increasing turbulence levels on the perpendicular velocity mea-
surements was also investigated. In contrast to the measurements of the fluctuation
amplitude, which is significantly influenced, no striking dependence can be found
for the velocity. Thus, the code IPF-FD3D could validate already existing results
from theory and previous full-wave simulations.

Isotropic turbulence was studied in slab and circular geometry. All density wave-
number spectra obtained from full-wave analysis showed an excessive decrease to-
wards higher wavenumbers. This effect could be related to the scattering efficiency
and was corrected accordingly. Although the corrected powers gave better agree-
ment with the input spectra, a slight over-correction was observed. This could be
due to various assumptions e.g. slab geometry, O-mode probing and linear back-
scattering in the derivation of the correction factor. Thus, further investigation of
the scattering efficiency needs to be performed in the future. The measurement
of the perpendicular velocity could validate the analytically predicted discrepancies
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for all input spectra. It could be shown that the deviations strongly depend on the
underlying turbulence spectrum and on the spectral resolution of the beam. Thus,
a significant increase in velocity deviations is observed for curved plasma geometries
where the spectral resolution is reduced. Since the frequencies used for probing
are directly related to the spectral resolution, the expected and measured velocities
vary depending on the polarization of the probing waves. This difference between
O- and X-mode probing becomes even more pronounced when a circular geometry
is assumed.

Effects on the velocity measurement due to the poloidal variation of the antenna
position were studied in circular geometry. Three different antenna positions at the
same distance from the poloidal flux surface at which the measurements are made
were used. All simulations showed the expected deviation with respect to the input
velocity as predicted analytically in the context of this thesis. No other significant
deviations were found.

Lastly, anisotropic turbulence, i.e. elongated and tilted turbulence structures,
were investigated in slab geometry. Due to the tilt angle of the turbulent structures,
a change in the correlation lengths is expected. This has an impact on both the
turbulence spectrum and the expected deviation in the velocity based on analytical
considerations. The expected difference in the perpendicular density wavenumber
spectrum could be reproduced by the full-wave simulations. Also the determined
perpendicular velocities showed the mentioned effect.

The investigations presented in this thesis show that there is a diagnostic effect
in the perpendicular velocity measurements with Doppler reflectometry. This effect
is strongly related to the spectral resolution and thus to the plasma curvature and
the probing beam geometry. Furthermore, the effect can lead to apparent poloidal
asymmetries when the velocity is measured for different wavenumbers at poloidally
different plasma positions. However, these deviations are not of the magnitude ob-
served in the experiments on poloidal asymmetries. Therefore, it can be assumed
that they are rather related to the actual behavior of the plasma. Nevertheless, the
observed diagnostic effect should be taken into account when analyzing experimen-
tal data. Especially in smaller fusion experiments where the spectral resolution is
strongly limited, deviations in the measured perpendicular velocity of the density
fluctuations are to be expected.

7.2 Qutlook

Further research regarding the diagnostic response of Doppler reflectometry will
require the use of realistic density fluctuations e.g. obtained from gyrokinetic tur-
bulence codes. This turbulence will include realistic combinations of anisotropic,
sheared structures in realistic geometries such as the ASDEX Upgrade plasma shape.
In addition, gyrokinetic turbulence allows for the consideration of realistic perpen-
dicular velocities, that include a wavenumber dependent phase velocity vy,

Initial efforts have already been made. Turbulence data is available, as deter-
mined by the gyrokinetic turbulence code GENE [26]. This code can perform local
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Figure 7.1: Background electron density ne, ppo; and the X-mode cut-off frequency
feo,x contours in AUG geometry. The n. fluctuations obtained from GENE are
plotted on top for demonstration. The O-mode cut-off layers are not shown since
they align with the poloidal flux surfaces.

(flux-tube) and global (full-torus) simulations of turbulence. Here, local simulations
on ppo = 0.785 are used that are based on AUG shot #38420. For this shot, Doppler
reflectometry data of the perpendicular propagation velocities of density fluctuations
are available, making it suitable for future comparison with the full-wave results.
A typical simulation grid , showing the AUG background electron density n., the
contours of the normalized poloidal plasma radius pp, and the X-mode cut-off fre-
quencies f., x is shown in figure 7.1. The turbulence, that is obtained by GENE is
plotted on top for demonstration. The turbulence is clearly anisotropic, including
elongated and sheared structures. The turbulence level is much higher than in the
synthetic turbulence simulations, such that nonlinear effects in the power response
might be evident.

Figures 7.2(a) and 7.2(b) show preliminary full-wave results for the density wavenum-
ber spectrum and the perpendicular velocity measurement, respectively. The re-
sults are obtained using O-mode with an antenna located at the outer midplane at
(R, z) = (2.3,0.1) m, probing upwards.

The GENE density wavenumber spectrum is shown in orange in fig. 7.2(a). It
is the time averaged spectrum from the outer midplane for k, = 0, which is the
closest approximation to Doppler reflectometry results [7]. It has two knees where
the spectral index changes. One at the main injection range at k; = 2cm™! and

one at about k; = 8cm™!. The second knee is indicated in the plot by a dotted
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Figure 7.2: Preliminary full-wave results in O-mode polarization (blue), that are
measured at p,, =0.785 with an antenna located on the outer midplane. (a) The
density wavenumber spectrum and (b) the obtained perpendicular velocity are com-
pared with the GENE characteristics (orange) and the expected velocity v exp
(black) that is obtained analytically.

orange line. The full-wave results are shown in blue. Results using the scattering
efficiency cf. (6.1) are indicated in light-blue. Fore the corresponding fits, two knees
at bk, =4cm~! and k;, = 8cm ™! are used.

Due to the high turbulence level of approx. 5%, a significantly increased non-
linearity factor v > 1 is to be expected. Correspondingly, the obtained wavenum-
ber spectrum does not completely agree with the GENE spectrum due to non-linear
effects. Neither for the uncorrected nor the corrected full-wave results perfect agree-
ment is observed. This strongly suggests that full-wave simulations are needed as

a connecting element for future comparisons of experimental Doppler reflectometer
data with GENE.

The results for the perpendicular velocity are shown in figure 7.2(b). The ve-
locity of GENE is shown in orange. The dotted line corresponds to the constant
background velocity v o ~ 6.8km/s that is induced by a toroidal velocity via the
poloidal magnetic field in the simulations. The solid line includes also the phase
velocity, that is determined by linear simulations. The sign of the phase velocity is
related to the dominant underlying micro-instability. A positive sign corresponds
to the ion diamagnetic drift direction (ITG modes), while a negative sign indicates
propagation in the electron-diamagnetic drift direction (TEM, ETG modes). The
expected velocity due to the probing beam width v ey, is shown in dashed black. It
is computed numerically by direct convolution using the GENE spectrum in figure
7.2(a). Due to the diagnostic effect, the slight decrease of the phase velocity is even
more blurred. Consequently, the detection of the jump at k; = 5cm™! can be much
more difficult in the experiment.

The result from full-wave simulations are shown in blue, including an uncer-
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tainty band. Particularly striking is the decay in the velocity for higher wavenum-
bers, which is unexpected and still needs further analysis. For small wavenumbers
k, < 8cm™! an increase in the velocity can be observed that might be connected
to the increase in v ¢y,. A correlation between the decrease in the phase velocity
and the full-wave results is not seen. However, obtaining the phase velocity from
linear simulations is only a first step. Its determination from high-frequency GENE
write-outs may be required to check for nonlinear deviations in vy,.

Further investigation of the gyrokinetic turbulence is necessary and left for future
work. For comparison with the experimental measurement data, full-wave data
obtained at the same antenna position and with the same frequencies and angles as
in the experiment are still needed in particular.
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